The following information has been taken directly from the Aetna Website
Clinical Policy Bulletin:
Cold Laser and High-Power Laser Therapies
Cold Laser and High-Power Laser Therapies
Number: 0363
The above policy is based on the following references:
Policy Aetna considers cold laser therapy (also known as low-level laser therapy or class III laser) and high-power laser therapy (class IV therapeutic laser) experimental and investigational because there is inadequate evidence of the effectiveness of cold laser therapy and high-power laser therapy in pain relief (e.g. See also CPB 0604 - Infrared Therapy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Background By definition, Despite these constraints, a wide variety of types of lasers, treatment schedules, and techniques have been used. Consequently, apparently conflicting results from studies of low-intensity lasers may not be in conflict, and may represent fundamental, but poorly understood, differences in treatment approaches. Although the results from large, uncontrolled, open trials of low-energy lasers in inducing wound healing have shown benefit, controlled trials have shown little or no benefit. The analgesic effects of low-energy lasers have been Published systematic reviews of the evidence have concluded that there is a lack of adequate evidence of effectiveness of cold laser therapy for treatment of chronic wounds (e.g., Schneider and Hailey, 1999; Cullum and Petherick, 2007; Flemming and Cullum, 1999; Samson et al, 2004; Simon et al, 2004; Wang, 2004; Nelson and Jones, 2006), arthritis (Brosseau et al, 2007; Brosseau et al, 2005; Marks and de Palma, 1999; Puett and Griffin, 1994; Wang, 2004), tuberculosis (Vlassov et al, 2006; Ziganshina and Garner, 2005), tinnitus (Waddell, 2004), pain (Gross et al, 1998; van der Heijden et al, 2002; Binder, 2002; Speed, 2006; Green et al, 2003), smoking cessation (White et al, 2006), epicondylitis (Chapell et al, 2002), Achilles tendinitis (McLauchlan et al, 2001), plantar heel pain (Crawford and Thomson, 2003; Landorf and Menz, 2007), back pain (Yousefi-Nooraie et al, 2008), and other musculoskeletal disorders (de Bie et al, 1998; Abdulwadud, 2001; Ohio BWC, 2004; Wang, 2004). Systematic evidence reviews have also concluded that low-energy laser therapy (e.g., Microlight 830, A recent study (Hirschl et al, 2004) evaluated the effectiveness of low-level laser therapy in patients with primary Raynaud's phenomenon (n = 48). Laser and sham therapy each were applied 5 days a week for 3 weeks. The authors found that low-level laser therapy reduced the frequency and severity of Raynaud attacks. The findings of this study were interesting but need to be validated by further investigation with more patients and follow-up. Kreisler et al (2004) assessed the effect of low-level laser application In a randomized controlled study, Bingol et al (2005) examined the effect of low-power gallium-arsenide laser treatment Markovic and Todorovic (2007) compared the effectiveness of dexamethasone and low-power laser (LPL) after surgical removal of impacted lower third molars under local anesthesia (2 % lidocaine / epinephrine). A total of 120 healthy patients In a systematic review of common conservative therapies for arm lymphoedema secondary to breast cancer treatment, Moseley et al (2007) stated that secondary arm Information on lymphedema from the BC Cancer Agency (2007) notes that laser therapy "may or may not High-power lasers (class IV therapeutic lasers; not to be confused with class IV surgical lasers) have In a systematic review on treatment of pressure ulcers, Reddy and colleagues (2008) concluded that there is little evidence to support routine nutritional supplementation or adjunctive therapies including laser therapy Carrasco et al (2009) noted that limited studies have demonstrated that LLLT may have a therapeutic effect on the treatment of myofascial pain syndrome (MPS). In this study, 60 patients with MPS and having 1 active trigger point in the anterior masseter and anterior temporal muscles were selected and assigned randomly to 6 groups (n = 10 in each group): Groups I to Ill were treated with GaAIAS (780 In a prospective, randomized double-blind study, A systematic evidence review by Chow et al (2009) concluded that lowLLLT reduced pain immediately after treatment in acute neck pain, and up to 22 weeks after completion of treatment, in patients with chronic neck pain. The authors included randomized controlled clinical trials (RCTs) or quasi-RCTs of LLLT, for participants aged 16 or over with acute or chronic neck pain, were eligible for inclusion. Sixteen RCTs (n = 820 participants) met inclusion criteria, with sample sizes ranging from 20 to 90 participants. The authors reported significant effects of LLLT on acute and chronic neck pain. An evaluation of the systematic evidence review by Chow et al by the Centre for Reviews and Dissemination (2009) found that, although suitable methods were employed to reduce the risks of reviewer error and bias for the processes of study selection and data extraction, the authors did not report on whether such methods were used to assess study quality, which was assessed using the Jadad scale. The CRD also found that this did not assess methods of allocation concealment, so the risk on investigator bias affecting trial results could not be ruled out. Furthermore, no information was provided on the actual levels of withdrawals and drop-outs. The CRD also found that all trials included in this systematic review had relatively small sample sizes and information was not provided on whether treatment groups (in individual trials) were comparable at baseline for likely confounders. The CRD noted that the authors of the systematic review acknowledged the considerable clinical heterogeneity in laser treatment parameters, but this also seemed apparent with regard to the sites treated, diagnoses, frequencies of treatment, and uses of cointerventions; it is therefore questionable whether meta-analysis was the most appropriate method of synthesis. The CRD concluded: "Although many aspects of this review were well-conducted, the considerable clinical heterogeneity seen, coupled with uncertainty regarding possible bias in the small trials included, mean the authors' conclusions should be interpreted with a degree of caution." In a a randomized, double-blind, placebo-controlled study, Ay and colleagues (2010) compared the effectiveness of LLLT on pain and functional capacity in patients with acute and chronic low back pain caused by lumbar disk herniation (LDH). A total of 40 patients with acute (26 females/14 males) and 40 patients with chronic (20 females/20 males) low back pain caused by LDH were included in the study. Patients were randomly allocated into 4 groups: (i) group 1 (acute LDH, n = 20) received hot-pack + laser therapy; (ii) group 2 (chronic LDH, n = 20) received hot-pack + laser therapy; (iii) group 3 (acute LDH, n = 20) received hot-pack + placebo laser therapy, and (iv) group 4 (chronic LDH, n = 20) received hot-pack + placebo laser therapy, for 15 sessions during 3 weeks. Assessment parameters included pain, patients' global assessment, physician's global assessment, and functional capacity. Pain was evaluated by VAS. Patients' and physician's global assessment were also measured with VAS. Modified Schober test and flexion and lateral flexion measures were used in the evaluation of ROM of lumbar spine. Roland Disability Questionnaire (RDQ) and Modified Oswestry Disability Questionnaire (MODQ) were used in the functional evaluation. Measurements were done before and after 3 weeks of treatment. After the treatment, there were statistically significant improvements in pain severity, patients' and physician's global assessment, ROM, RDQ scores, and MODQ scores in all groups (p < 0.05). However, no significant differences were detected between 4 treatment groups with respect to all outcome parameters (p > 0.05). There were no differences between laser and placebo laser treatments on pain severity and functional capacity in patients with acute and chronic low back pain caused by LDH. In a randomized double-blind controlled trial, Meireles and associates (2010) assessed the effectiveness of LLLT on pain reduction and improvement in function in the hands of patients with rheumatoid arthritis. A total of 82 patients with rheumatoid arthritis were included in this study. The experimental group was submitted to the application of laser therapy, whereas the control group received a placebo laser. Aluminum gallium arsenide laser was used, at a wavelength of 785 nm, dose of 3 J/cm(2) and mean power of 70 mW. The groups were homogenous at the beginning of the study with regard to the main variables (p > 0.05). There were no statistically significant differences between groups in most of the measurements taken at the end of the intervention including the primary variables; the following variables were the exceptions: favoring the experimental group -- inflammation of the inter-phalangeal joint of the right thumb (p = 0.012) and perimetry of the inter-phalangeal joint of the left thumb (p = 0.013); and favoring the control group -- flexion of the proximal inter-phalangeal joint of the right fifth finger (p = 0.021), perimetry of the third proximal inter-phalangeal joint of the right hand (p = 0.044), grip strength in the left hand (p = 0.010), and the work domain of the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire (p = 0.010). The authors concluded that low-level aluminum gallium arsenide laser therapy is not effective at the wavelength, dosage, and power studied for the treatment of hands among patients with rheumatoid arthritis. The Blue Cross and Blue Shield Association Technology Evaluation Center (2010) concluded that LLLT for either carpal tunnel syndrome or for chronic neck pain does not meet the Blue Cross and Blue Shield Association Technology Evaluation Center (TEC) criteria. Furthermore, the Work Loss Data Institute's clinical practice guideline on "Carpal tunnel syndrome" (2011) does not recommend LLLT as a therapeutic option. van Middelkoop et al (2011) determined the effectiveness of physical and rehabilitation interventions (i.e. exercise therapy, back school, transcutaneous electrical nerve stimulation (TENS), LLLT, education, massage, behavioral treatment, traction, multi-disciplinary treatment, lumbar supports, and heat/cold therapy) for chronic low back pain (LBP). The primary search was conducted in MEDLINE, EMBASE, CINAHL, CENTRAL, and PEDro up to 22 December 2008. Existing Cochrane reviews for the individual interventions were screened for studies fulfilling the inclusion criteria. The search strategy outlined by the Cochrane Back Review Groups (CBRG) was followed. The following were included for selection criteria: (i) RCTs, (ii) adult (greater than or equal to 18 years) population with chronic (greater than or equal to 12 weeks) non-specific LBP, and (iii) evaluation of at least one of the main clinically relevant outcome measures (pain, functional status, perceived recovery, or return to work). Two reviewers independently selected studies and extracted data on study characteristics, risk of bias, and outcomes at short, intermediate, and long-term follow-up. The GRADE approach was used to determine the quality of evidence. In total, 83 RCTs met the inclusion criteria: exercise therapy (n = 37), back school (n = 5), TENS (n = 6), LLLT (n = 3), behavioral treatment (n = 21), patient education (n = 1), traction (n = 1), and multi-disciplinary treatment (n = 6). Compared to usual care, exercise therapy improved post-treatment pain intensity and disability, and long-term function. Behavioral treatment was found to be effective in reducing pain intensity at short-term follow-up compared to no treatment/waiting list controls. Finally, multi-disciplinary treatment was found to reduce pain intensity and disability at short-term follow-up compared to no treatment/waiting list controls. Overall, the level of evidence was low. Evidence from RCTs demonstrated that there is low quality evidence for the effectiveness of exercise therapy compared to usual care, there is low evidence for the effectiveness of behavioral therapy compared to no treatment and there is moderate evidence for the effectiveness of a multi-disciplinary treatment compared to no treatment and other active treatments at reducing pain at short-term in the treatment of chronic LBP. Based on the heterogeneity of the populations, interventions, and comparison groups, the authors concluded that there are insufficient data to draw firm conclusion on the clinical effect of back schools, LLLT, patient education, massage, traction, superficial heat/cold, and lumbar supports for chronic LBP. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
|
- Basford JR. Low-energy laser therapy: Controversies and new research findings. Lasers Surg Med. 1989;9(1):1-5.
- Wheeland RG. Clinical uses of lasers in dermatology. Lasers Surg Med. 1995;16(1):2-23.
- Basford JR. Physical agents. In: Rehabilitation Medicine: Principles and Practice. 2nd ed. JA De Lisa, ed. Philadelphia, PA: J.B. Lippincott Co.; 1993: 404-424.
- Johannsen F, Hauschild B, Remvig L, et al. Low energy laser therapy in rheumatoid arthritis. Scand J Rheumatol. 1994;23(3):145-147.
- Heussler JK, Hinchey G, Margiotta E, et al. A double blind randomised trial of low power laser treatment in rheumatoid arthritis. Ann Rheum Dis. 1993;52(10):703-706.
- Bulow PM, Jensen H, Denneskiold-Samsoe B. Low-power Ga-Al-As laser treatment of painful osteoarthritis of the knee: A double-blind placebo-controlled study. Scand J Rehab Med. 1994;26(3):155-159.
- Krasheninnikoff M, Ellitsgaard N, Rogvi-Hansen B, et al. No effect of low power laser in lateral epicondylitis. Scand J Rheumatol. 1994;23(5):260-263.
- Snyder-Mackler L, Bork CE. Effect of helium-neon laser irradiation on peripheral sensory nerve latency. Phys Ther. 1988;68:223-225.
- Hirschl M, Katzenschlager R, Ammer K, et al. Double-blind, randomised, placebo controlled low level laser therapy study in patients with primary Raynaud's phenomenon. Vasa. 2002;31(2):91-94.
- Flemming K, Cullum N. Laser therapy for venous leg ulcers. Cochrane Database Syst Rev. 1999;(1):CD001182.
- Flemming K, Cullum N. Systematic reviews of wound care management (7): Low-level laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy for the treatment of chronic wounds. Health Technol Assess. 2001;5(9):137-221.
- Schneider W L, Hailey D. Low level laser therapy for wound healing. Health Technology Assessment. HTA 19. Edmonton, AB: Alberta Heritage Foundation for Medical Research (AHFMR); 1999:1-23.
- de Bie RA, de Vet HC, Lenssen AF, et al. Low-level laser therapy in ankle sprains: A randomized clinical trial. Arch Phys Med Rehabil. 1998;79(11):1415-1420.
- Marks R, de Palma F. Clinical efficacy of low power laser therapy in osteoarthritis. Physiother Res Int. 1999;4(2):141-157.
- Gross AR, Aker PD, Goldsmith CH, et al. Physical medicine modalities for mechanical neck disorders. Cochrane Database Syst Rev. 1998;(2):CD000961.
- van der Heijden GJ, van der Windt DA, de Winter AF. Physiotherapy for patients with soft tissue shoulder disorders: A systematic review of randomised clinical trials. Br Med J. 1997;315:25-30.
- Puett DW, Griffin MR. Published trials of nonmedicinal and noninvasive therapies for hip and knee osteoarthritis. Ann Intern Med. 1994;121(2):133-140.
- Waddell A. Tinnitus. In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; December 2004.
- Binder A. Neck pain. In: Clinical Evidence, Issue 7. Tavistock Square, UK; BMJ Publishing Group; June 2002.
- Landorf KB, Menz HB. Plantar heel pain and plantar fasciitis. In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; November 2007.
- Speed C. Shoulder pain. In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; February 2006.
- Cullum N, Petherick E. Pressure ulcers. In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; February 2007.
- Gerritsen AA, de Krom MC, Struijs MA, et al. Conservative treatment options for carpal tunnel syndrome: A systematic review of randomised controlled trials. J Neurol. 2002;249(3):272-280.
- O'Connor D, Marshall S, Massy-Westropp N. Non-surgical treatment (other than steroid injection) for carpal tunnel syndrome. Cochrane Database Syst Rev. 2003;(1):CD003219.
- Abdulwadud O. Does laser therapy improve healing and function in patients with tendinitis compared to no treatment? Evidence Centre Evidence Report. Clayton, VIC: Centre for Clinical Effectiveness (CCE); 2001.
- Alberta Heritage Foundation for Medical Research (AHFMR), Institute of Health Economics. The use of low level laser therapy in wound care in Alberta, Canada: Results of a survey of physical therapists involved in rehabilitation, long term care and home care. Edmonton, AB: AHFMR; 2001.
- Chapell R, Turkelson CM, Coates V, et al. Diagnosis and treatment of worker-related musculoskeletal disorders of the upper extremity. Evidence Report/Technology Assessment 62. Rockville, MD: AHRQ; 2002.
- Hirschl M, Katzenschlager R, Francesconi C, Kundi M. Low level laser therapy in primary Raynaud's phenomenon--results of a placebo controlled, double blind intervention study. J Rheumatol. 2004;31(12):2408-2412.
- Kreisler MB, Haj HA, Noroozi N, Willershausen B. Efficacy of low level laser therapy in reducing postoperative pain after endodontic surgery -- a randomized double blind clinical study. Int J Oral Maxillofac Surg. 2004;33(1):38-41.
- Simon A. Low level laser therapy for wound healing: An update. Information Paper. IP 22. Edmonton, AB: Alberta Heritage Foundation for Medical Research (AHFMR); 2004: 1-34.
- Ohio Bureau of Workers' Compensation (BWC). Position paper on low level laser therapy (LLLT). Medical Position Papers. Columbus. OH: Ohio BWC; September 2004.
- Wang G. Low level laser therapy (LLLT). Technology Assessment. Olympia, WA: Washington State Department of Labor and Industries, Office of the Medical Director; May 3, 2004. Available at: http://www.lni.wa.gov/ClaimsIns/Providers/Treatment/TechAssess/default.asp. Accessed June 8, 2005.
- Samson DJ, Lefevre F, Aronson N. Wound-healing technologies: Low-level laser and vacuum-assisted closure. Evidence Report. AHRQ Publication No. 05-E005-2. Rockville, MD: Agency for Healthcare Research and Quality (AHRQ); 2004. Available at:http://www.ahrq.gov/clinic/tp/woundtp.htm. Accessed June 8, 2005.
- McLauchlan GJ, Handoll HHG. Interventions for treating acute and chronic Achilles tendinitis. Cochrane Database Syst Rev. 2001;(2):CD000232.
- Green S, Buchbinder R, Hetrick S. Physiotherapy interventions for shoulder pain. Cochrane Database Syst Rev. 2003;(2):CD004258.
- Nelson EA, Jones J. Venous leg ulcers. In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; September 2007.
- Altan L, Bingol U, Aykac M, Yurtkuran M. Investigation of the effect of GaAs laser therapy on cervical myofascial pain syndrome. Rheumatol Int. 2005;25(1):23-27.
- Bingol U, Altan L, Yurtkuran M. Low-power laser treatment for shoulder pain. Photomed Laser Surg. 2005;23(5):459-464.
- Posten W, Wrone DA, Dover JS, et al. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005;31(3):334-340.
- White AR, Rampes H, Campbell JL. Acupuncture and related interventions for smoking cessation. Cochrane Database Syst Rev. 2006;(1):CD000009.
- California Technology Assessment Forum (CTAF). Low-energy laser therapy for the treatment of carpal tunnel syndrome. Technology Assessment. San Francisco, CA: CTAF; February 15, 2006. Available at: http://ctaf.org/ass/viewfull.ctaf?id=65198186097. Accessed June 6, 2006.
- Markovic A, Todorovic Lj. Effectiveness of dexamethasone and low-power laser in minimizing oedema after third molar surgery: A clinical trial. Int J Oral Maxillofac Surg. 2007;36(3):226-229.
- Ziganshina L, Garner P. Tuberculosis (HIV negative people). In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; July 2008.
- Crawford F, Thomson C. Interventions for treating plantar heel pain. Cochrane Database Syst Rev. 2003;(3):CD000416.
- Brosseau L, Robinson V, Wells G, et al. Low level laser therapy (Classes I, II and III) for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2005;(4):CD002049.
- Brosseau L, Robinson V, Wells G, et al. Low level laser therapy (Classes III) for treating osteoarthritis. Cochrane Database Syst Rev. 2007;(1):CD002046.
- Yousefi-Nooraie R, Schonstein E, Heidari K, et al. Low level laser therapy for nonspecific low-back pain. Cochrane Database Syst Rev. 2008;(2):CD005107.
- Vlassov VV, MacLehose HG. Low level laser therapy for treating tuberculosis. Cochrane Database Syst Rev. 2006;(2):CD003490.
- BC Cancer Agency. Lymphedema. Patient/Public Information. Vancouver, BC: BC Cancer Agency; revised November 2007.
- Kaviani A, Fateh M, Yousefi Nooraie R, et al. Low-level laser therapy in management of postmastectomy lymphedema. Lasers Med Sci. 2006;21(2):90-94.
- Carati CJ, Anderson SN, Gannon BJ, Piller NB. Treatment of postmastectomy lymphedema with low-level laser therapy: A double blind, placebo-controlled trial. Cancer. 2003; 98(6):1114-1122.
- Moseley AL, Carati CJ, Piller NB. A systematic review of common conservative therapies for arm lymphoedema secondary to breast cancer treatment. Ann Oncol. 2007;18(4):639-646.
- Plaghki L, Mouraux A. EEG and laser stimulation as tools for pain research. Curr Opin Investig Drugs. 2005;6(1):58-64.
- Stergioulas A. Effects of low-level laser and plyometric exercises in the treatment of lateral epicondylitis. Photomed Laser Surg. 2007;25(3):205-213.
- Reddy M, Gill SS, Kalkar SR, et al. Treatment of pressure ulcers: A systematic review. JAMA. 2008;300(22):2647-2662.
- Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: A systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet. 2009;374(9705):1897-1908.
- Centre for Reviews and Dissemination (CRD). Efficacy of low-level laser therapy in the management of neck pain: A systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Database of Abstracts of Reviews of Effectiveness (DARE). Accession No. 12009109918. York, UK: University of York; November 25, 2009.
- Carrasco TG, Guerisoli LD, Guerisoli DM, Mazzetto MO. Evaluation of low intensity laser therapy in myofascial pain syndrome. Cranio. 2009;27(4):243-247.
- Yeldan I, Cetin E, Ozdincler AR. The effectiveness of low-level laser therapy on shoulder function in subacromial impingement syndrome. Disabil Rehabil. 2009;31(11):935-940.
- Teggi R, Bellini C, Piccioni LO, et al. Transmeatal low-level laser therapy for chronic tinnitus with cochlear dysfunction. Audiol Neurootol. 2009;14(2):115-120.
- Ay S, Doğan SK, Evcik D. Is low-level laser therapy effective in acute or chronic low back pain? Clin Rheumatol. 2010;29(8):905-910.
- Meireles SM, Jones A, Jennings F, et al. Assessment of the effectiveness of low-level laser therapy on the hands of patients with rheumatoid arthritis: A randomized double-blind controlled trial. Clin Rheumatol. 2010;29(5):501-509.
- Blue Cross and Blue Shield Association (BCBSA), Technology Evaluation Center (TEC). Low-level laser therapy for carpal tunnel syndrome and chronic neck pain. TEC Assessment Program. Chicago, IL: BCBSA; November 2010;25(4). Available at:http://www.bcbs.com/blueresources/tec/vols/25/25_04.pdf. Accessed March 31, 2011.
- van Middelkoop M, Rubinstein SM, Kuijpers T, et al. A systematic review on the effectiveness of physical and rehabilitation interventions for chronic non-specific low back pain. Eur Spine J. 2011;20(1):19-39.
- Work Loss Data Institute. Carpal tunnel syndrome (acute & chronic). Encinitas, CA: Work Loss Data Institute; 2011. Available at: http://www.guideline.gov/content.aspx?id=33178&search=cold+laser+therapy+. Accessed March 26, 2012
No comments:
Post a Comment